Controlling Non-Catalytic Decomposition of High Concentration Hydrogen Peroxide

نویسندگان

  • Debasis Sengupta
  • Sandip Mazumder
  • Samuel Lowry
چکیده

Hydrogen peroxide (H2O2) is a strong oxidizing agent. High concentration H2O2 or High Test Peroxide (HTP) has been used extensively in the past in propulsion applications as mono and bipropellant. At low temperature, HTP can be catalytically decomposed to water and oxygen. Drawbacks to this approach include catalyst poisoning due to the presence of stabilizers in HTP, and susceptibility of the metal catalyst to melting because of the intense heat release. This renders the use of catalysts not only inconvenient but also quite expensive. An alternate approach for HTP decomposition is thermal, where no catalyst is required. HTP decomposition is accompanied by the production of enormous amount of heat that often leads to runaway reactions and subsequent explosion . If the rate of thermal decomposition can be controlled, the ensuing technology would prove to be a viable and inexpensive alternative to using catalysts. This technology has the potential to replace any device that decomposes H2O2 catalytically. Also, the controlled thermal decomposer can be used as an accelerator to heat any substance quickly at the expense of very low power. In order to control non-catalytic HTP decomposition, a deeper understanding of the chemical mechanism for H2O2 decomposition must be developed. The current work reports the development of detailed kinetic steps for HTP decomposition over a wide range of temperature and pressure. The resulting mechanism is then used to perform CFD simulations of a commercial HTP decomposer (patented by Pratt & Whitney) to explore safe operating conditions. A similar strategy can be applied to model COIL technology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalytic Decomposition of Hydrogen Peroxide in the Presence of Synthesized Iron-Manganese oxide Nanocomposites via Different Methods

The special application of iron-manganese oxide nanocatalysts has been investigated in decomposition of hydrogen peroxide. In this research, iron-manganese oxide nanocomposites were synthesized by co-precipitation, sol-gel and mechanochemical methods using iron (III) nitrate, iron (II) sulfate and manganese (II) nitrate as starting materials. These nanocomposites were prepared on the variou...

متن کامل

Catalytic Decomposition of H2O2 on MnFe2O4 Nanocomposites Synthesized by Various Methods in the Presence of Silicate and Zeolite Supports

In this research iron manganese oxide nanocomposites were prepared by co-precipitation, sol-gel and mechanochemical methods by using iron (III) nitrate, iron (II) sulfate and manganese (II) nitrate as starting materials. These nanocomposites were prepared in the presence of various catalyst beds. The polyvinyl pyrrolidon (PVP) was used as a capping agent to control the agglomeration of the nano...

متن کامل

Catalytic Decomposition of H2O2 on MnFe2O4 Nanocomposites Synthesized by Various Methods in the Presence of Silicate and Zeolite Supports

In this research iron manganese oxide nanocomposites were prepared by co-precipitation, sol-gel and mechanochemical methods by using iron (III) nitrate, iron (II) sulfate and manganese (II) nitrate as starting materials. These nanocomposites were prepared in the presence of various catalyst beds. The polyvinyl pyrrolidon (PVP) was used as a capping agent to control the agglomeration of the nano...

متن کامل

Preparation of Promoted Ni0.1Co0.9Fe2O4 Ferrite Nanoparticles and Investigation of Its Catalytic Activity on Decomposition of H2O2 and Optical Characterization of Pure Ni0.1Co0.9Fe2O4

Pure and ZnO-doped Ni0.1Co0.9Fe2O4 catalyst were prepared by co-precipitation method and thermal decomposition in air calcinated at 400-700°C and that treated with different amounts of zinc nitrate (0.46-2.25 w% ZnO). X-ray powder diffractometry, scanning electron microscopy (SEM) and BET analysis of nitrogen adsorption isotherms investigated the crystalline bulk structure and the surface area ...

متن کامل

CATALYTIC HYDROGEN PEROXIDE DECOMPOSITION ON Lal-,Sr,Co03-6 PEROVSKITE OXIDE

Lanthanide perovskite oxides are mentioned as material for hydrogen peroxide sensor because they can catalytically decompose hydrogen peroxide in an aqueous medium. The catalytic properties of these perovskite oxides to hydrogen peroxide are suggested due to their oxygen vacancies influenced by the oxide non-stoichiometry. In this paper, we investigate the catalytic hydrogen peroxide decomposit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004